Joint M-Best-Diverse Labelings as a Parametric Submodular Minimization

نویسندگان

  • Alexander Kirillov
  • Alexander Shekhovtsov
  • Carsten Rother
  • Bogdan Savchynskyy
چکیده

We consider the problem of jointly inferring the M -best diverse labelings for a binary (high-order) submodular energy of a graphical model. Recently, it was shown that this problem can be solved to a global optimum, for many practically interesting diversity measures. It was noted that the labelings are, so-called, nested. This nestedness property also holds for labelings of a class of parametric submodular minimization problems, where different values of the global parameter γ give rise to different solutions. The popular example of the parametric submodular minimization is the monotonic parametric max-flow problem, which is also widely used for computing multiple labelings. As the main contribution of this work we establish a close relationship between diversity with submodular energies and the parametric submodular minimization. In particular, the joint M -best diverse labelings can be obtained by running a non-parametric submodular minimization (in the special case max-flow) solver for M different values of γ in parallel, for certain diversity measures. Importantly, the values for γ can be computed in a closed form in advance, prior to any optimization. These theoretical results suggest two simple yet efficient algorithms for the joint M -best diverse problem, which outperform competitors in terms of runtime and quality of results. In particular, as we show in the paper, the new methods compute the exact M -best diverse labelings faster than a popular method of Batra et al., which in some sense only obtains approximate solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M-Best-Diverse Labelings for Submodular Energies and Beyond

We consider the problem of finding M best diverse solutions of energy minimization problems for graphical models. Contrary to the sequential method of Batra et al., which greedily finds one solution after another, we infer all M solutions jointly. It was shown recently that such jointly inferred labelings not only have smaller total energy but also qualitatively outperform the sequentially obta...

متن کامل

A push-relabel framework for submodular function minimization and applications to parametric optimization

Recently, the first combinatorial strongly polynomial algorithms for submodular function minimization have been devised independently by Iwata, Fleischer, and Fujishige and by Schrijver. In this paper, we improve the running time of Schrijver’s algorithm by designing a push-relabel framework for submodular function minimization (SFM). We also extend this algorithm to carry out parametric minimi...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS A Strongly Polynomial Algorithm for Line Search in Submodular Polyhedra

A submodular polyhedron is a polyhedron associated with a submodular function. This paper presents a strongly polynomial time algorithm for line search in submodular polyhedra with the aid of a fully combinatorial algorithm for submodular function minimization as a subroutine. The algorithm is based on the parametric search method proposed by Megiddo.

متن کامل

A strongly polynomial algorithm for line search in submodular polyhedra

A submodular polyhedron is a polyhedron associated with a submodular function. This paper presents a strongly polynomial time algorithm for line search in submodular polyhedra with the aid of a fully combinatorial algorithm for submodular function minimization. The algorithm is based on the parametric search method proposed by Megiddo.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016